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Abstract. We study theq-state Potts antiferromagnet withq = 3 on the honeycomb lattice.
Using an analytic argument together with a Monte Carlo simulation, we conclude that this model
is disordered for allT > 0. We also calculate the ground state entropy to beS0/kB = 0.507(10)
and discuss this result.

The effect of ground state disorder and associated non-zero ground-state entropyS0 has
been a subject of longstanding interest. A physical example is ice, for whichS0 =
0.82±0.05 cal/(K-mole), i.e.S0/kB = 0.41±0.03 [1, 2]§. Among spin models, an example
is the Ising antiferromagnet (AF) on the triangular lattice. In the context of this model,
Wannier argued that a non-zero ground state (GS) entropy implies the absence of long-range
order, namely, staggered magnetizationMst for T > 0 [3]. Another example is the Ising AF
on the kagoḿe lattice [4, 5]. In both of these Ising models, the non-zero GS entropy has the
effect of removing a phase transition at finite temperature. The Ising AF on the triangular
lattice is critical atT = 0 [6], while on the kagoḿe lattice, with a larger value ofS0, it is
disordered even atT = 0 [5]. In these two cases, the non-zero GS entropy is associated with
frustration. However, there are also spin models, such as the antiferromagneticq-state Potts
model [7–9] on the square (SQ) and honeycomb (HC) lattice, which exhibit GS entropy
without frustration. Because of the absence of frustration, these models constitute ideally
simple cases where one can study the effects of ground state entropy on the thermodynamics
of a statistical mechanical model‖ In contrast to the ferromagnetic (FM) Potts model, which
has a finite-temperature phase transition for dimensionalityd > 1, the question of whether
the q-state Potts AF has a phase transition at finite (or zero) temperature is more delicate
and depends on both the value ofq and the type of lattice. Theq = 3 Potts AF on the SQ
lattice has been well studied; an exact result of Baxter showed that it is critical atT = 0
[11], in agreement with a renormalization group argument [12], and several Monte Carlo
simulations have been performed on it [13, 14]. However, to our knowledge, the behaviour
of theq = 3 Potts AF on the HC lattice has not been definitely established. We report here
the results of a study of this model.

† E-mail address: shrock@insti.physics.sunysb.edu
‡ E-mail address: tsai@insti.physics.sunysb.edu
§ Henceforth, we shall use units such thatkB ≡ 1.
‖ Ground state entropy without frustration can also occur in models with continuous variables and interactions
[10]. A yet more complicated case is that of quenched disorder with frustration, as in spin glasses.
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The (isotropic, nearest-neighbour, zero-field)q-state Potts model on a lattice3 is defined
by the partition functionZ = ∑

{σn} e−βH with the Hamiltonian

H = −J
∑
〈nn′〉

δσnσn′ (1)

whereσn = 1, . . . , q are Zq-valued variables on each siten ∈ 3, β = T −1, andJ < 0
for the AF case. We defineK = βJ , a = eK , x = (a − 1)/

√
q, and the reduced free

energy (per site)f = −βF = limN→∞ N−1 ln Z, whereN denotes the number of sites in
the lattice. We consider3 = hc here.

We first observe that for theq = 2 (Ising) case, the paramagnetic–ferromagnetic (PM–
FM) and PM–AFM critical points are both determined by the equation [15]

√
q + 3x − x3 = 0. (2)

These areac = 2+√
3 (PM–FM) andac,AF = a−1

c = 2−√
3 (PM–AFM). (The third root of

equation (2) is a complex-temperature (CT) singular point ata = −1 ≡ as .) An equivalent
representation of the partition function isZ = ∑

G′⊆G vb(G′)qn(G′) [16, 17, 9], whereG′

denotes a subgraph ofG = 3, v = (a − 1), b(G′) is the number of bonds andn(G′)
the number of connected components ofG′. This enables one to analytically continue the
model from positive integralq to realq [17, 9]. Carrying out this analytic continuation and
analysing equation (2) for the critical points, one sees that the pointsac(q) and ac,AF (q)

increase and decrease, respectively, reflecting the fact that asq increases, one must go
to lower temperature to achieve FM and AFM long-range order. Asq reaches the value
qz = (3+√

5)/2 = 2.618. . ., ac,AF decreases to 0, i.e. the AFM phase is squeezed out, and
there is no longer any finite-temperature AF critical point, which now occurs only atT = 0.
Note thatqz = B5 = 1 + τ , whereBr = 4 cos2(π/r) is ther ′th Beraha number [18] andτ
is the golden mean. Whenq > qz, ac,AF is negative, i.e. an unphysical, CT singular point.
It follows that for q > qz and, in particular, forq = 3, the HC Potts AF has no critical
point or associated continuous phase transition at anyT > 0†. As q increases fromqz to
q = 3, the root of equation (2) which, forq < qz, was the PM–AFM critical pointac,AF (q),
moves left from the origin. Since forq > qz, there is no longer any physical AFM phase,
we shall denote this point asac2; it moves fromac2(qz) = 0 left to ac2(3) = −0.1848. . ..
Meanwhile, asq increases from 2 to 3, (i) the PM–FM critical pointac(q) moves to the right,

throughac(qz) = 1
2(3 +

√
15+ 6

√
5) = 4.1654.. to ac(3) = 4.4115. . ., and the disordered,

paramagnetic (PM) phase (and its CT generalization) expands accordingly; (ii) the root

as(q) of (2) moves left, from−1, throughas(qz) = 1
2(3 −

√
15+ 6

√
5) = −1.1654. . ., to

as(3) = −1.2267. . ..
In particular, this argument by analytic continuation inq excludes the possibility, for

the HC lattice, of a massless low-temperature phase with algebraic asymptotic decay of
correlation functions of the type discussed in [21]. However, this leaves open the possibility
that the model might have a first-order transition (with finite correlation length, and hence
noncritical). Indeed, this is what did happen for theq = 3 Potts AF on the triangular

† From these exact results, recalling the connectionZ(q, 3, K = −∞) = P3(q), wherePG(q) is the chromatic
polynomial for the graphG [19], we would expect that the behaviour ofPhc(q) (where 3 = hc denotes the
thermodynamic limit of the HC lattice) would differ forq < qz andq > qz, as would follow if the zeros ofPhc(q)

formed a boundary curve in the complexq plane which crossed the real axis atqz and separated the regions which
include the segmentsq < qz and q > qz. Given the observation that the crossing point of a boundary curve
increases by about1q ' 0.4 from an 8× 8 triangular lattice with cylindrical boundary conditions (CBCs) to the
thermodynamic limit [20], our expectation is consistent with the finding [20] that there is a crossing curve on the
8 × 8 HC lattice with CBCs atq ' 2.2.
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lattice [22, 23], although for that case, the ground state is only finitely degenerate, so that
S0 = 0, andMst is non-zero below the transition. In contrast, given thatS0 is non-zero
in the present case of the HC lattice, the Wannier argument implies thatMst = 0 for all
T > 0, so that the discontinuity at such a hypothetical transition would have to occur inU

but not inMst . We consider this to render such a transition unlikely but do not know of a
proof which precludes a discontinuity in short-range order (which enters intoU ) while long
range order,Mst , remains zero.

An effective way to study this possibility of a phase transition is to perform Monte
Carlo simulations of the model, and we have done this†. For the Monte Carlo simulation,
we have used two different algorithms to update the spins: the Metropolis algorithm and the
Swendsen–Wang cluster algorithm (SWCA) [24]. Since the SWCA reduces critical slowing
down in simulations of models exhibiting a critical points with divergent correlation lengths,
the agreement of the results obtained from these two algorithms serves as a confirmation
of our conclusion from the analytic argument above that the model is not critical atT = 0.
For Metropolis, we used lattices with periodic boundary conditions (BCs) of sizes ranging
from 8 × 8 to 40× 40. For SWCA, following [24], we used lattices with helical BCs
in the horizontal direction and free BCs in the vertical direction (where the HC lattice is
represented as a brick lattice with horizontal bricks) with sizes ranging from 19× 19 to
39×39. Typically, we ran for several thousand sweeps through the lattice for thermalization
before calculating averages. Each average was calculated from 10 000 sweeps through the
lattice. The full data was obtained as a thermal loop, to test for any hysteresis associated
with either critical slowing down or metastability. No such hysteresis was observed. The
results obtained with these two different algorithms were in excellent agreement, differing
at most by only about 1%. In figure 1 we show measurements of the internal energy per
site,U , from the SWCA simulation.

The intercept and slope atK = 0 follow from the high-temperature expansion
−U/J = (g/2)[1/q + ((q − 1)/q2)K + O(K2)], whereg is the coordination number of the
lattice, soU/|J | = 1

2 + 1
3K + O(K2) for the q = 3 Potts AF on the HC lattice. Clearly, at

T = 0, i.e.K = −∞, the spins on each bond must be different, soU = −(g/2)〈δσnσn′ 〉 = 0.
As a check on our program, we have also simulated theJ > 0 model and obtained
excellent agreement with the PM–FM phase transition known from equation (2) to occur at
Kc = 1.484. Evidently, the data smoothly curves down from theK = 0 value toward the
K = −∞ value asK decreases to−5; there is no indication of any phase transition, in
particular, a first-order one. The absence of any critical slowing-down for large negativeK

is in agreement with our analytic argument from equation (2) that the model is not critical
at T = 0. The fact that the data for the 19× 19 and 39× 39 lattices are very close to each
other (as was also true for the intermediate sizes that we used) shows that it is not necessary
to go to larger lattice sizes; the present ones are adequate for our conclusion. Indeed, this
is not surprising, in view of our result that the lattice is disordered forT > 0 (if there had
been any indication of critical behaviour as signalled, e.g. by critical slowing-down, then
we would also have run simulations on larger lattices).

† Two other methods would be (i) to analyse high-temperature series expansions (a first-order transition could
manifest itself in a peculiar behaviour of exponents, as in [23]); and (ii) to calculate CT zeros of the partition
function and search for a new phase boundary which crosses the positive reala axis at a point not included in the
roots of (2). (This relies on the fact that in the thermodynamic limit, these zeros typically merge to form curves
which separate CT generalizations of phases. If such a boundary were found, the density of zeros near the real
axis would yield the critical exponentα, andα = 1 would suggest a first-order transition.) While these methods
are of interest in their own right, we were able to obtain convincing evidence for our conclusion from the Monte
Carlo method alone.
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Figure 1. Measurements of internal energyU , as a function ofK = βJ , for the q = 3 Potts
AF on the HC lattice. See text for details.

Our results imply that theq = 3 Potts AF on the HC lattice has the property that in
the complexa plane, the pointsa = 1 (K = 0) anda = 0 (K = −∞) are analytically
connected anda = 0 does not lie on a CT phase boundary. We have calculated CT zeros
of Z on small lattices with periodic BCs and have obtained results which are consistent
with this conclusion†. We note that previous studies of the CT zeros of the square-lattice
Potts model forq = 3 and 4 have shown that the pattern of zeros in the Re(a) < 0 region
exhibits a significant dependence on the boundary conditions [25–27].

For q > 4, it has been proved that the Potts AF on the HC lattice is disordered for all
T > 0 [28]. This result is quite consistent with our finding, since increasingq increases
the disorder in the model.

As part of our study, we have calculated the GS entropyS0(3, q) = S0(hc, 3) of the
model, using the relation

S(β) = S(β = 0) + βU(β) −
∫ β

0
U(β ′) dβ ′ (3)

starting the integration atβ = 0 with S(β = 0) = ln q for the q-state Potts model. We
found, as in previous work [29], that this provides a very accurate method for calculatingS0.
For this we used the Metropolis algorithm with periodic BCs for several lattice sizes. Since
U(K) rapidly approaches its asymptotic value of 0 asK decreases past aboutK = −5
(see figure 1), the RHS of (3) rapidly approaches a constant in this region, enabling one
to obtain the resultant value ofS(β = ∞) for each lattice size. We then performed a fit
to this data and extrapolated the result to the thermodynamic limit; the results are shown
in figure 2. As a check, we also carried out the analogous calculations for theq = 3
Potts AF on the SQ lattice. A fit to the finite-size dependence of our sq lattice data
agrees very well with the form found in [13, 30],S0(sq, 3) = S0(L; sq, 3) + csq,3/L

2 with
csq,3 = 1.077, and we getS0(sq, 3) = 0.4317(3), in excellent agreement with the exact
value S0(sq, 3) = 3

2 ln 4
3 = 0.4315. . . [2, 8, 9]. For the HC lattice, as is evident from

† Calculations of CT zeros for this model are also being performed by A J Guttmann and I Jensen. We thank
these authors for informing us of their work.
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Figure 2. Measurements of GS entropyS0, as a function of lattice size, for theq = 3 Potts AF
on the HC and SQ lattices.

figure 2, our measurements do not exhibit the same finite-size dependence as for the sq
lattice. An empirical function including terms up toL−6 yields a good fit to the data (see
figure 2) and gives theL = ∞ value of the GS entropy for theq = 3 HC Potts AF

S0(hc, 3) = 0.507± 0.010 (4)

where the error is an estimate of the uncertainty. This yieldsW(hc, 3) = 1.66±0.02, where
W(3, q) = eS0(3,q). We observe that our results are consistent, to within the uncertainty,
with the exact expressionW(hc, 3) = 5

3. The ratioRS(3, q) = S(3, q, T = 0)/S(q, T =
∞) serves as a useful measure of the reduction of disorder in a given model asT decreases
from ∞ to 0. Our results yieldRS(hc, 3) = 0.4615± 0.010 for theq = 3 HC Potts AF,
which shows that the disorder atT = 0 is a substantial fraction of its maximal,T = ∞
value.

From the basic relationS = βU + f and the property that limK→−∞ βU(β) = 0, as is
true of theq-state Potts AF models considered here, it follows that

S0(3, q) = f (3, q, K = −∞) = lim
N→∞

N−1 ln(P3(q)) (5)

or equivalentlyW(3, q) = limN→∞ P3(q)1/N . That is, the GS entropy is determined by
the asymptotic behaviour of the chromatic polynomial in the thermodynamic limit. Series
of the formW(3, q) = q((q − 1)/q)g/2W̄ (3, q), whereW̄ (3, q) = 1 + ∑∞

n=1 wny
n with

y = 1/(q − 1) were calculated in [31]. It is of interest to compare our result (4) with an
estimate from the series for̄W(hc, 3) = 1 + y5 + 2y11 + 4y12 + · · ·, calculated through
O(y18) [31]. Because of the changes of sign in the HC series (the coefficients of the first
five terms are positive, while those of the remaining four terms are negative), it is difficult
to make a reliable extrapolation. Simply taking the sum yieldsW(hc, 3) = 1.687, which is
agreeably close to our central value, 1.66.

In summary, combining analytic arguments and a Monte Carlo simulation, we have
reached the conclusion that theq = 3 Potts AF on the HC lattice is disordered for allT > 0
and have calculated the GS entropy for this model.
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